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Abstract. Despite the tremendous attention given to conservation projects in
the Neotropics, few published studies have documented remote sensing studies
in tropical highland areas. Even fewer publications have addressed the use of
topographic normalization methods in these regions. This article discusses the
influence of anisotropic reflectance patterns on land cover classification for two
study areas characterized by very rugged terrain and high relief. Landsat Thematic
Mapper subscenes for sites in both Costa Rica and Ecuador were corrected using
both Lambertian and non-Lambertian models. While use of the Lambertian
model proved inappropriate for these mountainous areas, application of the
non-Lambertian model enhanced classification accuracies.

1. Introduction

During the last 20 years, remotely sensed data have been used extensively to
monitor environmental change and to map land cover (Booth 1989, Lillesand and
Kiefer 1994). Remote sensing techniques have frequently been applied to the study
of tropical ecosystems, due in part to the growing recognition of conservation issues
and the potential impacts of global climate change. Regional-scale changes in forest
cover, for example, have often been monitored with NOAA AVHRR imagery (e.g.
Townshend and Justice 1986, Malingreau et al. 1989), which has a 1-1km or coarser
spatial resolution. These researchers have identified numerous deforested areas in
both Africa and the Amazon Basin.

Additionally, many tropical remote sensing studies have utilized Landsat Multi-
Spectral Scanner (MSS) data (Sader ez al. 1990). While numerous image processing
techniques have been developed to map cover types in lowland rain forests using
MSS data, most of these projects have been only partially successful. MSS imagery
appears to have little utility for assessing forest clearing accurately, nor does it enable
one to distinguish among various successional stages (Tucker et al. 1984, Sader
et al. 1990).

The superior spatial and spectral resolutions of Landsat Thematic Mapper (TM)
imagery may enable researchers to produce high quality maps of vegetation types
and zones of human disturbance (Sader et al. 1990). TM data have been utilized in
the tropics primarily during the last 7 years (e.g. Vanclay and Preston 1990, Mulders
et al. 1992, Mausel et al. 1993, Hill and Foody 1994, Moran et al. 1994, Paradella
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et al. 1994, Skole et al. 1994, Brondizio et al. 1996). These studies demonstrate the
utility of TM imagery for mapping complex tropical land cover in areas located
below 2000 m elevation.

Few researchers have used remote sensing techniques to study tropical highlands.
Studies involving the application of TM imagery in humid tropical mountain environ-
ments have noted the strong influence of topography on spectral classification (e.g.
Sader et al. 1989, Echavarria 1993, Garcia and Alvarez 1994, Hill and Foody 1994 ).
In many Latin American countries, these regions cover more than 10% of the
country (e.g. Balslev 1988) and include a very heterogenous mixture of vegetation.
Detailed land cover maps for these areas are scarce, and rates of anthropogenic
disturbances have rarely been quantified. Given the high rate of deforestation in
most tropical montane areas (Young and Leon 1995, Keating 1997), it seems appro-
priate to develop techniques for mapping both the major vegetation types and areas
of anthropogenic disturbance. Accurate land cover maps would enable environmental
scientists to monitor land degradation and would also provide a basis for modelling
long-term environmental changes.

Discriminating among different types of land cover in areas of high relief using
remotely sensed data has been difficult (Justice er al. 1980, Colby 1991). Except in
flat terrain, the natural surface variable which exerts the strongest influence on remotely
sensed data is topography (Estes 1983, p.962). In montane regions, changing
slope and aspect angles produce a phenomenon known as ‘anisotropic reflectance’
(Hugli and Frei 1983). The reflectance of a single cover type varies with topography,
and therefore, the classification process for rugged terrain is seriously impaired
(Smith ez al. 1980).

These radiometric effects are very complex for vegetated surfaces, and under
many sensing conditions modelling this differential reflectance may be limited (Hugli
and Frei 1983). Three techniques which have been applied to reducing the topo-
graphic effect are spectral-band ratioing, application of a Lambertian model and
application of a non-Lambertian model. This paper will explore the use of the latter
two techniques to correct for uneven reflectance patterns in Thematic Mapper
imagery. To our knowledge, this study involves the first application of the Lambertian
and non-Lambertian models to correct for anisotropic reflectance in the tropics.

In this article, we will describe several approaches to mapping land cover in
tropical montane areas using TM imagery. The research was conducted in selected
areas of both Costa Rica and Ecuador that include very rugged terrain and a variety
of land cover types. The sites differ considerably with respect to the number of cover
types and the spatial heterogeneity of the landscape. Whereas the Costa Rican site
includes forest, urban areas and well-established agricultural areas, the Ecuadorian
site includes land within and adjacent to a national park that has been modified by
recent cutting and burning. Therefore, the Costa Rican site exhibits a higher number
of cover types and more discrete boundaries between cover types than does the
Ecuadorian site. Our purpose is to demonstrate that topographic normalization
techniques are applicable to remote sensing projects in diverse tropical montane
areas.

First, we will describe several pre-processing techniques that were employed to
reduce anisotropic reflectance in images covering mountainous terrain. Second, we
will describe image processing techniques used for discriminating among several
important cover types in both study areas. Finally, we discuss the potential for
topographic normalization models to improve classification accuracies in the tropics
through general comparison of the results from the two study areas.
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2. Background: topographic normalization

In mountainous terrain, slope and aspect vary significantly over short distances,
so that a wide range of effective view and illumination angles can be obtained for a
single Landsat scene (Smith er al. 1980). This differential illumination of surfaces
manifests visually as the impression of relief, and is referred to as the ‘topographic
effect’ (Holben and Justice 1979). Formally defined, it is the variation in radiances
from inclined surfaces as compared to the spectral response from a horizontal surface
as a function of the orientation of the surfaces relative to the light source (incidence
angle) and sensor position (exitance angle) (Holben and Justice 1979, Justice et al.
1980).

Land cover classification with multispectral data in mountainous terrain is often
unsuccessful because surfaces of the same cover type but with different slope angles
and aspects reflect different radiance values (Holben and Justice 1979). The effect
has been seen to vary considerably with small changes in solar elevation and azimuth,
and slope angle. Various efforts have been made to minimize this topographic effect,
and in some instances, to provide accessible topographic normalization routines
(Holben and Justice 1979, Justice and Holben 1979, Justice et al. 1980, Smith et al.
1980, Teillet ez al. 1982, Estes 1983, Hugli and Frei 1983, Kowalick et al. 1983, Stohr
and West 1985, Hall-Konyves 1987, Kawata et al. 1988, Leprieur et al. 1988, Civco
1989, Colby 1991, Meyer et al. 1993, Hodgson and Shelley 1994, Ekstrand 1996).

The simplest technique for reducing anisotropic reflectance imposed by topo-
graphic effects, shadows and seasonal changes in solar illumination is the band ratio
transformation (Jensen 1996, Crippen 1988). Dividing spectral values from one band
by those of another produces a data layer that may enable one to distinguish among
different cover types more accurately than with the original data set. One problem
with this technique, however, is that variations in the albedos of surface covers may
be obscured if they have similar spectral reflectance properties (Sabins 1997).

Two important models have been applied in previous topographic normalization
efforts. The first, a Lambertian model, assumes that phenomena on the surface of
the earth reflect incident radiation in all directions equally. A good approximation
would be a piece of white matte paper illuminated by diffuse skylight; the perceived
brightness of the paper does not change with angle of view (Simonett 1983).
According to Smith ez al. (1980) the radiance of a Lambertian surface is given by:

L (A, e)=L (1) cosi (1)

where: L =radiance, 2 =spectral wavelength, e=exitance angle=slope, L ,=radiance
when i =e =0, i = incidence angle.

Previous studies have reported that topographic normalization efforts based
on the Lambertian model may be valid only for a restricted range of incident
and exitant angles (Smith er al. 1980). Moreover, it may overcompensate for the
‘topographic effect’ (Justice and Holben 1979, Estes 1983, Colby 1991, Ekstrand
1996).

A non-Lambertian model assumes that incident radiation is scattered according
to the bidirectional reflection distribution function (BRDF) of illuminated phenomena
(Estes 1983), which is related to surface roughness (Smith ez al. 1980). In previous
studies the non-Lambertian assumption has been more effective than the Lambertian
assumption in representing vegetated surfaces (e.g. Smith ez al. 1980, Colby 1991).
The BRDF can be described by the Minnaert constant k, which was first applied by
Minnaert (1941) in photometric analysis of lunar surfaces. Although the diffused
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light component has been neglected in previous studies (e.g. Smith ez al. 1980, Colby
1991), removal of atmospheric path radiance should be considered.

To derive the Minnaert constant k, the following equation, which provides the
satellite radiance, is first linearized (Smith ez al. 1980):

L (A, e)=L 4(2) cos"™ "¢ (2)
The regression value for k£ is then obtained using:
L cose=L ,cosicos‘e (3)
and
log(L cose)=log L ,+ k log(cos i cose) (4)

where: y =log(L cose), the response variable, x =log(cos i cos ¢), the independent
variable, b =1og(L ,) to obtain the linear form y =kx+ b. The equation is solved
for k, which is the slope of the regression line and the Minnaert constant. A range
of incident and exitant angles is required to accurately calculate the Minnaert
constant k.

A backwards radiance correction transformation can be developed using both
the Lambertian and non-Lambertian assumptions if data for L , are not available
(Smith et al. 1980). For the Lambertian assumption and equation (1):

L,=L/cosi (5)
For the non-Lambertian assumption and equation (2):
L= L (cos e)l(cos’ i cos' e) (6)

The effective incidence angle, cosine i, measured from the surface normal is defined
by (Hodgson and Shelley 1994):

cos i =cos(90 — 0;) cos 0,+ sin(90 — ;) sin 6, cos(ps— ¢n) (7)

where: 0, =solar elevation angle, 0, =surface normal zenith angle or slope of the
terrain surface, ¢; = solar azimuth angle, ¢, = surface azimuth or aspect angle.

The effectiveness of utilizing the Minnaert constant in the topographic normalization
process is a function of numerous variables, many of which have not been quantified.
Some papers have investigated the application of detailed a priori knowledge of site
characteristics (i.e. Ekstrand 1996) to correct for anisotropic reflectance utilizing the
Minnaert constant. This paper, as suggested by Estes (1983, p. 1059), continues
attempts (e.g. Colby 1991, ERDAS 1994, Hodgson and Shelley 1994, Colby 1995,
Keating 1995) to develop reliable image preprocessing methods for reducing topo-
graphic effects, without detailed a priori knowledge of surface feature reflectance
values, for land cover classification. Whereas attempts to reduce topographic effects
in Landsat TM imagery utilizing the Minnaert constant have been undertaken in
temperate regions, this paper will describe the first application of these techniques
in the Neotropics (Colby 1995, Keating 1995).

3. Study area descriptions
3.1. Ecuador

Podocarpus National Park, the southernmost protected area in Ecuador
(figure 1), covers more than 146 000 ha of montane forest and paramo (alpine tundra)
communities. Located on the eastern cordillera of the Ecuadorian Andes, this region
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Figure 1. Map of Podocarpus National Park, Ecuador. The study site is indicated with a
rectangular box in the northwestern section of the park.

includes a number of low, rugged mountain ranges that may extend for more than
50km. These mountains are not of volcanic origin, and glaciers have not been present
since the Pleistocene (see Hastenrath 1981). The physiography of the study area is
characterized by a series of sharp ridges, the slopes of which are dissected by
numerous streams. Because these highlands receive more than 4000 mm of rain each
year (Keating 1995), rates of erosion and mass wasting are high.

The study area includes northwestern Podocarpus National Park and adjacent
sections of the Loja Province (figure 1). An 8000 m X 13 500 m (108 kmz) area was
chosen that includes a diverse set of terrain features and cover types. Elevation
ranges from 3432 m at the highest point of the Cordillera Oriental down to 2120 m
near the western highway. This region is characterized by numerous ‘knife-edged’
ridges, and slope angles vary from 0° to 57°, where the mean is 25° and the standard
deviation is 16° (Keating 1995).
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This area was chosen because it includes a diverse array of vegetation com-
munities and land uses. Both grass and shrub paramo communities dominate the
upper sections of the Cordillera Oriental and the adjacent ridge tops above 3100 m.
Because several areas of the ridge top have been burned at least once since 1983,
the vegetation varies tremendously in structure and composition. The upper montane
forests (2600 m) in this region have not experienced many anthropogenic disturbances
during the past 25 years.

Below 2600 m elevation, most areas have been disturbed repeatedly by humans
during the past four decades. Logging, highway construction and the gradual
expansion of agricultural areas have resulted in nearly complete deforestation of
the entire Loja Province (Fundacion Natura 1992). Many farms, pastures and
small villages currently cover much of the land adjacent to the western edge of the
Park. Moreover, there are also many abandoned, degraded lands in this zone, which
are usually covered by some form of scrub vegetation. Many hillsides above the
agricultural areas are burned every several years, as fires are often associated with
human activities in the area. Therefore, the western section of the study area is
covered with a very patchy mosaic of plant communities that exhibit various stages
of recovery after disturbances.

3.2. Costa Rica

The Navarro watershed is located at the headwaters of the Reventazdn river
basin in Costa Rica (figure 2). The watershed is an important source of natural
resources within the country. For example, the hydropower potential of the
Reventazon river basin may be unsurpassed in Costa Rica (Quesada 1979). High
sediment loads and streamflow variability from the Navarro watershed affect the
proximate Cachi reservoir (Quesada 1979, Jansson and Rodriguez 1992 ) and planned
hydroelectric projects further downstream.

The elevation of the 279km’ Navarro watershed ranges from approximately
3300 m near the summit of the Irazu volcano to 1029 m at the La Troya streamflow
gauge. Slope angles calculated for the watershed varied from 0° to 48°, with a mean
of 19° and standard deviation of 13° (Colby 1995). In the north the watershed drains
the southern slope of the Irazu volcano, which is an important agricultural area for
the country (Cortés and Oconitrillo 1987).

The central section is the most level and contains the city of Cartago. The
Navarro River flows through the mountainous southern section, which is covered
primarily by premontane moist and wet forests (Tosi 1969, Holdridge 1967). Despite
the protected status of the forests, this area has experienced considerable modification
by human activity.

Natural hazards have also shaped the terrain surface of the Navarro watershed.
Recurrent hazards include, volcanic eruptions and debris flows (Waldron 1967),
floods (Solis et al. 1991), landslides (Mora 1987), and seismic activity. Deforestation
has also contributed to flooding in the watershed (Quesada 1979).

4. Methodology
4.1. DEM
4.1.1. Ecuador

Before topographic normalization was performed, a digital elevation model
(DEM) was constructed with the use of several software packages. Initially, sections
of a 1:50 000 scale topographic map (40 m contour interval) were digitized with
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Figure 2. Map of Reventazon River Basin, Costa Rica.

AutoCAD software (Autodesk 1992). All index contour lines were digitized, and
other contour lines were added for areas above 3200 m and for those characterized
by steep slopes. Before a DXF output file was created, isolines were given elevation
labels and placed within a common layer.

ARC/INFO software (ESRI 1992) was utilized to create a lattice from the DXF
file. After an ARC coverage was created, the ARCTIN module was used to build a
triangulated Irregular Network (TIN), and the TINLATTICE program was used to
convert the TIN to a lattice. Upper left and lower right corner coordinates were
selected that matched those of the study area. The resulting lattice was then exported
to ERDAS IMAGINE 8.1 (ERDAS 1994). The image file was filtered once with a
5X 5 pixel low pass filter to ensure that the digital model did not contain areas of
unnaturally abrupt changes in slope (figure 3).

4.1.2. Costa Rica

The primary elevation data used to create a DEM for the Navarro watershed
was the US Defense Mapping Agency’s (DMA) digital terrain elevation data
(DTED). DTED are distributed in 1 degree by 1 degree or smaller cells, with a
16-bit range of elevation values. In this study, two cells of DTED Level 1 data were
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Figure 3. Shaded relief image of Podocarpus National Park.

utilized. The cell boundaries extended from 9°N to 10°N and from —83°W to
—85°W. The data were provided in a 3 arc s™! format, and the original resolution
of the data between 9°N and 10°N latitude was 92:161 m*. A projection file was
created in ARC/INFO to enable rectification of the original points from a geographic
to a Lambert Conformal Conic projection. To enable integration with additional
data sets, the DTED file was resampled to 90 m with a bilinear interpolation routine
(figure 4).

4.2. Image preprocessing

Before land cover classification for each study area was undertaken, three
preprocessing steps were carried out: haze removal, rectification, and topographic
normalization.

4.2.1. Ecuador

This study involved a cloud-free 15 X 15km TM subscene, which was located in
Path 10, Row 63, and acquired on 2 November 1989. Bands 1-5 and 7 were utilized
for an 8 km X 13-5km section of this scene. After the image was checked for radio-
metric distortions, such as line striping, minimum value subtraction was performed
to remove the effects of atmospheric scattering (Jensen 1996). Histograms for
individual bands showing numbers of pixels per digital number did not reveal any
low outliers. Therefore, an atmospheric correction program was used to subtract the
lowest digital number of a given band from each pixel in the band.
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Figure 4. Shaded relief image of Navarro Watershed.

Using ERDAS software, the TM image was rectified using known ground-control
points from the topographic map mentioned above. Twenty points were utilized,
and a root mean squared error (RMSE) of 0-388 was achieved. During the resampling
process, the image was subset to precise UTM coordinates (Zone 17 S); a nearest
neighbour interpolation procedure determined spectral values for each pixel. The
image extends from 700 000 to 708 000 m East, and 9 543 000 to 9 556 500 m North.

4.2.2. Costa Rica

For the Costa Rican study site the primary source for land cover information
was a Landsat TM digital image acquired on 19 February 1986. The Navarro
watershed was located in Quad 4 of the Landsat scene at Path 15, Row 53.
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A haze removal technique to reduce the increase in overall brightness in each
image due to atmospheric scattering was completed after identifying the shift from
zero in the histogram for each band (Richards 1986). A rectification process was
then performed to register and resample the image to a Lambert Conic Conformal
projection. An RMSE of 0-110 was obtained using 14 ground control points. A
nearest neighbour interpolation procedure provided spectral values for the rectified
cells, which were resampled to 90 m to match the resolution of the DEM.

4.2.3. Topographic normalization

A topographic normalization routine based on the Lambertian model was
developed for the 8.1 version of ERDAS IMAGINE. Hodgson and Shelley (1994)
also developed an IMAGINE Model Maker algorithm based on the non-Lambertian
model. This algorithm allows for the inclusion of unique Minnaert constants for
each spectral band; however, the constants themselves must be calculated separately.
For these studies, a flexible method for deriving the Minnaert constants was
developed using IDRISI, a raster-based GIS package for the personal computer
(Eastman 1993), and an additional program for calculating logarithms.

The images were first normalized using the Lambertian model. The topographic
normalization routine in IMAGINE was utilized for this process. In addition to the
DEM and TM images, the IMAGINE algorithm required the solar azimuth (Ecuador
109-5°, Costa Rica 124°) and solar elevation angle (Ecuador 51-2°, Costa Rica 45°)
for each satellite image.

To normalize the images using the non-Lambertian assumption, an algorithm
similar to that developed by Hodgson and Shelley (1994) was operated in IMAGINE.
This algorithm allows the creation of image layers consisting of the cosine of the
incidence angle (cos i) and cosine of the exitance angle (cos e) for each cell. After
cosine files were created, they were imported into IDRISI along with the TM image
as separate bands images. The Overlay module in IDRISI was then used to multiply
the cosine layers together. The TM band images were then multiplied by the ‘cos e’
image separately. Logarithms for the resulting images were calculated in a separate
C++ program and re-imported into IDRISI.

The Regress module in IDRISI calculated the linear regression between the
independent variable image and the dependent variable images equation (4). The
Minnaert constant for each spectral band was the slope of the regression line.
The Regress module also provides the capability to use a mask to highlight the area
from which to calculate the regression. For example, a mask was used to calculate
Minnaert constants solely for the area representing the Navarro watershed. The
derived Minnaert constants (table 1) were then used as parameters to normalize

Table 1. Minnaert constants derived for the non-Lambertian corrected images.

TM band Ecuador Costa Rica
1 0-326 0-780

2 0-414 0-757

3 0433 1-019

4 0-421 0-288

5 0528 0743

7 0-521 NA
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the images using an algorithm similar to that developed by Hodgson and Shelley
(1994) and the non-Lambertian assumption.

4.3. Image classification

Both studies utilized training site development and image classification capabilities
available in IMAGINE. Training sites for both study areas were chosen based upon
personal site visits, aerial photography, and for the Costa Rican watershed, land use
maps. After these sites were selected, histograms and training site statistics were
displayed using a signature editor. We determined whether or not training site
statistics were parametric, and developed a covariance matrix to classify the image
with parametric decision rules.

In order to evaluate the spectral separation of training site samples, a number of
methods were utilized in an iterative fashion to provide a basis for deciding whether
to retain, merge, reshape, or find new training sites. Initially, mean values of training
site samples were displayed with rectangular or elliptic boundaries on scatter plots
of spectral band combinations. We also utilized statistical estimates of separability
and contingency. In particular, we examined the divergence values generated by
the Jeffries—Matusita algorithm, which has been shown to be very effective in other
studies (e.g. Mausel et al. 1990). ‘Divergence’ is a measure of statistical separability
between two groups or classes (Toll 1984) and serves as an indirect measurement of
classification accuracy.

Scene classification for both study areas was undertaken using a decision rule
which first applied a parallelepiped classification, and then classifies the remaining
pixels using a maximum likelihood classifier. In addition, a minimum distance
classifier performed well for the Ecuadorian study area. Both studies employed a
‘post classification sort’” (Hutchinson 1982) before accuracy assessments were
performed.

4.3.1. Ecuador

While the two studies shared a similar classification methodology, their classi-
fication categories differed significantly. In the Ecuadorian study, initial classification
categories included grass paramo, shrub paramo, forest, and lower elevation
‘deforested areas’, which consisted of pastures, abandoned pastures and immature
secondary forest. Because it was not possible to discriminate effectively among these
latter categories, they were combined into a ‘deforested’ category.

Before accuracy assessments were conducted, two procedures were employed to
reduce the variance in the classified images. Because the minimum mapping unit in
the ground truth map was 3 mm, or 150 ground metres, a 3 X 3 majority filter was
used to remove small, homogeneous clusters of pixels. This procedure ensures that
spatial variation in the classified image is not significantly higher than that in the
ground reference image.

Secondly, postclassification sorting (e.g. Hutchinson 1982) was performed to
reduce misclassification of different cover classes derived from very similar spectral
signatures. With this technique, decision rules involving ancillary data layers are
used to separate classes with different geographical positions but similar training
signatures. In this study, all paramo areas that occurred below 2800 m elevation
were reclassified as ‘deforestation’, and all deforested areas that occurred above
2800 m were reclassified as paramo.
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4.3.2. Costa Rica

Remotely sensed digital satellite imagery was utilized by Colby (1995) to provide
land cover classifications in order to characterize the Navarro watershed for hydro-
logic modelling purposes. Classification schemes used as reference included an
adaptation of the Anderson Classification System (Anderson et al. 1976) for Costa
Rica made by Campbell e al. (1980), and categories from 1:10 000 scale land use
maps which covered a portion of the watershed. Areas used as training sites were
selected based on information from site visits, aerial photographs, and the land use
maps. Initial training sites were identified on the 30 m TM image, and then used to
guide the selection of training sites on the 90 m TM image.

Three images were classified using a 12 category classification scheme: the
unnormalized image, the image normalized using a Lambertian assumption, and
the image normalized using a non-Lambertian assumption. It was not possible to
achieve spectral separation between forests and some fields of coffee. Therefore, a
post-classification sort (Hutchinson 1982) was undertaken to reclassify several coffee
fields, to the west and south of Cartago, from forest. The 12 classification categories
consisted of:

(1) Bare areas 1—wet soil, agricultural fields

(2) Bare areas 2—exposed rock, stripmines or quarries
(3) Grass 1—dominantly dry grass

(4) Grass 2—lush-growing, green grass

(5) Grass 3—dry grass with brush component, charall
(6) Coffee

(7) Crops

(8) Brush

(9) Forest

(10) Urban

(11) Residential

(12) Invernadernos (greenhouses)

After the initial classification, the 12 categories were collapsed or grouped into 5
more general categories for hydrologic purposes (table 2). Accuracy assessment was
performed on the images consisting of the 5 general categories:

(1) Bare areas,

(2) Grass,

(3) Shrubs,

(4) Forest, and

(5) Impervious areas.

Table 2. Hydrologic categories and sub-categories for the Costa Rican study.

Bare Grass Shrubs Forest Impervious
bare 1 grass 1 coffee forest urban
bare 2 grass 2 crops residential

grass 3 brush invernaderos
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4.4. Accuracy assessment
44.1. Ecuador

Initially, classified images were evaluated visually, and the effects of topographic
normalization were noted. All three images were also evaluated quantitatively with
the use of a digital ground truth map. Several types of ground reference data (sensu
Congalton 1988) were included in the ground-truth map. Initially, aerial photographs
of scale 1:60 000 were interpreted for both 1976 and 1989. Polygons were transferred
manually to a topographic map, which were later digitized in AutoCAD. Image files
containing the polygons were created in ERDAS 7.5 with a grid-to-polygon program.

Between September 1991 and July 1992, extensive field reconnaissance trips
were made throughout the study site. Numerous 35 mm photographs were taken of
locations that could be identified on topographic maps. Vegetation composition and
structure were noted, and many zones of anthropogenic disturbance were mapped
in the field. These maps were compiled, and polygons of homogeneous cover types
were digitized.

These digital cover maps were transferred to IDRISI. Data layers were iteratively
combined to produce a master cover map for the study areas. The Errmat module
of IDRISI was then used to perform the accuracy assessments. In accordance with
a formula developed by Fitzpatrick-Lins (1980), 1000 pixels were randomly selected
for the assessment of TM images. Individual pixels for each category in the classified
images were compared to the ground truth map.

For each classified image, an error matrix was developed, and ‘overall accuracy’
was calculated (Story and Congalton 1986). Kappa statistics, which assess overall
accuracy by incorporating individual errors of omission and commission, were also
calculated (Congalton 1991). For both study areas, the KAPPA program (Congalton
1991) was used to compare Kappa statistics derived from classified images that had
received different normalization treatments.

44.2. Costa Rica

For the five land cover categories in this assessment 257 samples were randomly
generated. In previous research a standard random sampling approach has been
determined to provide satisfactory results for classification evaluation (Congalton
1988).

The following process was developed to evaluate each sample pixel. The pixel
was first located on the 30 m TM image, and an initial assessment was made as to
the location and general pattern of surrounding land cover types. If located in the
northern half of the watershed, the pixel would be identified on the 1:10 000 scale
land use maps. Black and white stereo pair aerial photographs (1:20 000 scale) were
also analysed, for example, to identify seasonal land cover types such as crops. If
located in the southern half of the watershed, black and white stereo pair aerial
photographs (1:60 000 scale) were analysed to identify the reference pixel. If a land
cover change had occurred in the area of a sample pixel location, which did not
occur often, the sample pixel was discarded.

Rather than using techniques such as the majority value for a 3 X 3 window, the
actual value of the sample pixel was used for evaluation purposes. It was believed
that an averaged value from a 3 X 3 window would not accurately represent the
heterogeneity of certain cover types, such as agricultural areas, at the 90 m resolution.
To ensure identification accuracy, the classification process for each reference pixel
was carried out twice. The IDRISI module Errmat was used to derive error matrices
and Kappa coefficients (Rosenfield and Fitzpatrick-Lins 1986).
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5. Results

Minnaert constants differed substantially between the two study sites (table 1).
For the Ecuadorian site, Minnaert constants are typically higher for bands that
correspond to longer wavelengths; there was a slight decrease between bands 5 and
7, which represent mid-infrared bands. In the Costa Rican scene, the greatest range
of difference was between bands 3 and 4. The constants were typically higher and
more homogeneous in the Costa Rican subscene than in the Ecuadorian one. The
larger spatial extent of the study area, and aggregation of the TM image from 30 to
90 m could have contributed to the derivation of more homogeneous Minnaert
constants for the Costa Rican site.

For both study sites, uncorrected images are considerably different than their
corresponding non-Lambertian-corrected images (figures 5-8). A reduction of the
topographic effect is visually apparent in the non-Lambertian normalized images:
whereas effects of anisotropic reflectance, such as topographic inversion and shadows,
are apparent in the uncorrected images, they are nearly absent in the non-Lambertian-
corrected images. The non-Lambertian-corrected images exhibit far fewer effects of
aspect and illumination angle than do the corresponding uncorrected images.

A reduction of the topographic effect was less visually apparent in the Lambertian-
normalized images, especially in the Ecuadorian image. In fact, pixels that cover
areas of high slope appear over-corrected, so that some pixels appear much brighter
than they normally would in the uncorrected images. Therefore, sections of the study
sites that occur in steep areas appear ‘washed-out’, and classification of these sections
of the images was not particularly successful.

Quantitative assessments of classification accuracies agree with the visual
assessments (tables 3 and 4). For the Ecuadorian study area, overall accuracies
ranged from 65-07 (Lambertian corrected, minimum distance classification) to 79-69
percent (non-Lambertian, minimum distance classification). The results from the
Costa Rican watershed ranged from 76-65 (Lambertian corrected, maximum
likelihood classification) to 81-1 percent (non-Lambertian, maximum likelihood
classification). For both study areas, therefore, classification accuracies were lowest
for Lambertian-corrected images and highest for non-Lambertian-corrected images.

Table 3. Results of the accuracy assessments for Ecuador.

Correction type Classification algorithm  Overall accuracy (%) Kappa statistics (%)

Uncorrected maximum likelihood 75-98 4832
Uncorrected minimum distance 77-18 53-94
Lambertian maximum likelihood 75-38 54-59
Lambertian minimum distance 65-07 44-42
Non-Lambertian maximum likelihood 77-88 55-78
Non-Lambertian minimum distance 79-69 61-50

Table 4. Results of the accuracy assessments for Costa Rica.

Correction type Classification algorithm Opverall accuracy (%) Kappa statistics
Uncorrected maximum likelihood 77-82 67-86
Lambertian maximum likelihood 76-65 6603

Non-Lambertian maximum likelihood 82-10 74-10
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The Kappa statistics, which incorporate errors of omission and commission,
were somewhat lower than the ‘overall” accuracy ratings mentioned above (tables 3
and 4). However, the range of Kappa statistics is greater than that achieved with
the overall percentages. The KAPPA program indicated that for the Costa Rican
site, Kappa statistics were significantly different between the Lambertian-corrected
and non-Lambertian corrected images (table 5). However, there were not significant
differences between other combinations of images.

For the Ecuadorian site, there were significant differences between nearly all pairs
of Kappa statistics calculated (table 6). For images classified with the Maximum
Likelihood classifier, only the F-statistic calculated for the Lambertian and non-
Lambertian corrected images was insignificant. In contrast, for the images classified
with the Minimum Distance algorithm, all F-statistics were significant (p <<0-05);
the non-Lambertian image is clearly the most accurate, while the Lambertian image
is least accurate. Collectively, these assessments suggest that better separation of
categories was achieved with the non-Lambertian correction method.

6. Discussion

Overall, results for both study areas indicated that the non-Lambertian-corrected
images were the most accurate. This agreement is significant given the potential
sources of error inherent in evaluating the effectiveness of topographic normalization
routines through conventional accuracy assessments, and given that two different
techniques were utilized for dissimilar study areas. Because it is difficult to assess
accuracy with ground reference data, the Kappa statistics and overall percentages
were believed to underestimate the true value of topographic normalization.

Table 5. Results of the KAPPA analysis test for comparison between error matrices for the
Costa Rican study site.

Topographic normalization treatment F statistic Result®
Uncorrected vs Lambertian-corrected 0-35 NS
Uncorrected vs non-Lambertian-corrected 1-23 NS
Lambertian-corrected vs non-Lambertian corrected 1-59 sP

*S =ssignificant, NS =not significant.
® a=0-05.

Table 6. Results of the KAPPA analysis test for comparison between error matrices for the
Ecuadorian study site.

Topographic normalization treatment F statistic Result®

A. Maximum Likelihood Classifier

Uncorrected vs Lambertian-corrected 1-67 sP

Uncorrected vs non-Lambertian-corrected 1-96 sP

Lambertian-corrected vs non-Lambertian corrected 0-33 NS
B. Minimum Distance Classifier

Uncorrected vs Lambertian-corrected 2:65 sP

Uncorrected vs non-Lambertian-corrected 1-22 sP

Lambertian-corrected vs non-Lambertian corrected 4-99 sP

*S =ssignificant, NS =not significant.
® a=005.
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In the Ecuadorian study site, the heterogeneity of vegetation communities below
2600 m was very high due to the complex disturbance history of this region; that
portion of the landscape is covered with a patchy mosaic of plant communities that
exhibit various stages of recovery after cutting and burning. Because several of the
categories classified may occur within a relatively small area, the mixed pixel effect
(e.g. Vanclay and Preston 1990) precluded more accurate classification of the lower
landscape.

Secondly, whereas most of the steepest slopes are covered with forests, the sections
of the study area that exhibit the greatest heterogeneity of land cover are located
on relatively gentle slopes; both the forest/deforestation ecotone and the paramo
communities are located on slopes of less than 20° and in well illuminated areas.
Had the areas of greatest spatial heterogeneity of cover types been located on steeper
slopes, the effects of topographic normalization would have been even more apparent.

In the Costa Rican watershed, the effects of resampling the original 30 m TM
data to 90 m on classification accuracy is unclear. Markham and Townshend (1981)
found that scene noise tends to be averaged out at lower resolutions. The percentage
of boundary (mixed) pixels increases as spatial resolution decreases, however, and
this tends to decrease classification accuracies.

The drainage pattern on the slopes of the Irazi volcano was likely altered during
the last eruption (March 1963—March 1965). Additionally, emergency measures such
as channel improvements and levees were undertaken (Waldron 1967). Alterations
to the terrain in the watershed may not have been incorporated in the creation of
the DEM for this watershed, which is supported by misalignment of drainage patterns
between the DEM and TM imagery in some areas (Colby 1995). Moreover, the
relatively coarse resolution (90 m) of the DEM may have hindered normalization
effectiveness; use of a higher quality DEM would likely increase the accuracy of the
normalization process. However, the resolution of the DEM used in this study may
be typical of the finest that is available for many remote areas in tropical developing
countries.

Despite these potential sources of error, the differences between images are readily
apparent; the overall accuracy values compare favourably with those obtained by
other researchers (e.g. Garcia and Alvarez 1994). Very few researchers working
in tropical areas report values above 85 per cent. The classification assessment
derived in the Costa Rican study compares favourably with the results from Sader
et al. (1991), who worked in different sites represented on the same TM image. In
both studies of this region, the number of spectral categories was reduced after
classification and before final evaluation. Individual class accuracies were higher for
some areas (forest 93%) and lower for others (second growth and successional 47%)
in the study by Sader et al. (1991 ) than in the present study. In the Navarro watershed
the user’s accuracy rose as high as 92 per cent (forest), and did not drop below 61
per cent (shrubs), providing more consistent accuracy results. The somewhat higher
Kappa coefficient derived from the non-Lambertian corrected image reflects this
consistency (74%, Sader et al. 1991: 70%).

While the KAPPA program generated significant F-statistics for nearly all pairs
of classified images in the Ecuadorian study, differences in accuracies among
treatments were less apparent for the Costa Rican images. In the Costa Rican study,
a significant F statistic was generated for the Lambertian and non-Lambertian-
corrected images. However, differences between the Kappa statistics for the corrected
and non-corrected images were not found to be statistically significant.



Land cover classification in the tropical highlands 1497

This trend could have resulted from several factors. First, the spatial resolution
of the DEM (90 m) utilized for this study was larger than that used in the Ecuadorian
study (30 m). Therefore, the effects of topographic normalization would have been
less apparent for the Costa Rican study area than for the Ecuadorian site. Secondly,
the sample size of pixels used for the accuracy assessment in the Costa Rican study
(n=1257) was somewhat smaller than that used in the Ecuadorian study (» = 1000).
In any event, both visual assessments of the classified images and the overall accuracy
percentages indicate that topographic normalization with non-Lambertian treatment
enhanced classification accuracies for both study areas.

Classification accuracy could be improved using the non-Lambertian assumption
and a more locally derived Minnaert constant (Colby 1991). Using the mask and
linear regression capabilities in IDRISI, such an application is possible with the
procedures developed in this paper. Future studies should be undertaken to evaluate
the effects of both spatial scale and landscape heterogeneity on the calculation of
Minnaert constants.

7. Conclusion

The study sites in this paper differ considerably with respect to cover types and
spatial heterogeneity of the landscape. However, both sites are characterized by
rugged, mountainous terrain and are located in tropical environments. The reduction
of the topographic effect in these studies, which was obvious in both visual
assessments and enhanced classification accuracies, demonstrates the utility of topo-
graphic normalization routines based on a non-Lambertian assumption in tropical
montane areas.
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