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Abstract
Hot droughts, droughts attributed to below-average precipitation and exceptional warmth, are increasingly common in the 
twenty-first century, yet little is known about their effect on coniferous tree growth because of their historical rarity. In much 
of the American West, including California, radial tree growth is principally driven by precipitation, and narrow ring widths 
are typically associated with either drier or drought conditions. However, for species growing at high elevations (e.g., Larix 
lyalli, Pinus albicaulis), growth can be closely aligned with above-average temperatures with maximum growth coinciding 
with meteorological drought, suggesting that the growth effects of drought span from adverse to beneficial depending on 
location. Here, we compare radial growth responses of three high-elevation old-growth pines (Pinus jeffreyi, P. lambertiana, 
and P. contorta) growing in the San Jacinto Mountains, California, during a twenty-first-century hot drought (2000–2020) 
largely caused by exceptional warmth and a twentieth-century drought (1959–1966) principally driven by precipitation defi-
cits. Mean radial growth during the hot drought was 12% above average while 18% below average during the mid-century 
drought illustrating that the consequences of environmental stress exhibit spatiotemporal variability. We conclude that the 
effects of hot droughts on tree growth in high-elevation forests may produce responses different than what is commonly 
associated with extended dry periods for much of western North America’s forested lands at lower elevational ranges and 
likely applies to other mountainous regions (e.g., Mediterranean Europe) defined by summer-dry conditions. Thus, the cli-
matological/biological interactions discovered in Southern California may offer clues to the unique nature of high-elevation 
forested ecosystems globally.
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Introduction

While the general expectation is that drought impacts forest 
ecosystems negatively, that is not always the case. Multi-
year drought conditions are common in Southern California 
having occurred in 10 of the 13 decades since 1900 and 
have substantially increased in duration and intensity during 
the twenty-first century (Soulé and Knapp 2024), mirroring 

global trends (Chiang et al. 2021). Drought conditions are 
often defined by the Palmer Drought Severity Index (PDSI), 
a water balance-based metric that factors in supply (i.e., pre-
cipitation) and demand (i.e., evapotranspiration) of moisture 
and is standardized to reflect climatic normals for a given 
region (Palmer 1965; Soulé 1992). Drought conditions thus 
can be generated by persistent heat, extended dryness, or 
a combination, the latter being a “hot drought” (e.g., De 
Boeck and Verbeeck 2011; Overpeck 2013; Udall and 
Overpeck 2017; Cheng et al. 2019; Soulé and Knapp 2024), 
which has driven the severe, and likely anthropogenically 
assisted, drought in much of California over the past two 
decades (Williams et al. 2020). The ecological effects of 
drought, however, are complex producing “whole-commu-
nity responses” with some species increasing in abundance 
while others decrease (Prugh et al. 2018). These responses 
are affected by several interactive mechanisms including the 
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extreme-event timing of heat waves and droughts (De Boeck 
et al. 2011) trait groups (e.g., annual and perennial species, 
above- and below-ground productivity), scale, ranging from 
plant to ecosystem level, duration, and compound events ini-
tiating other disturbance (e.g., prolonged heat and drought-
initiated insect outbreaks) (Seaton et al. 2015; Breshears 
et al. 2021; Ma et al. 2023).

Despite widespread evidence of twenty-first-century 
drought-related mortality within coniferous forests of Cal-
ifornia, USA (e.g., Young et al. 2017; Dong et al. 2019; 
Goulden and Bales 2019), the adverse effects of extreme 
dryness on tree growth are spatially inconsistent (e.g., Rob-
inson et al. 2023). Here, we discuss how the enhanced radial 
growth rates of three long-lived coniferous species growing 
in the San Jacinto Mountains of Southern California coin-
cided with a severe, multi-decadal drought (2000–2020) that 
represents the driest period since at least 800 CE in south-
western North America (Williams et al. 2022). We posit that 
the proportionality of precipitation and temperature devia-
tions that generate drought is critical and may generate dif-
ferential tree growth responses depending on location and a 
species’ elevational range distribution.

Methods

We collected tree-ring data from three long-lived pine spe-
cies (Pinus jeffreyi, Jeffrey pine, hereafter PIJE and P. lam-
bertiana, sugar pine, PILA in summer 2021, and P. contorta 
ssp. murrayana, lodgepole pine, PICO in summer 2022) at 
elevations between 2300 and 2800 m a.s.l. within Mount 
San Jacinto State Park (MSJSP) in the San Jacinto Mountain 
(SJM) Range (33.7° N, 116.7° W), one of the Peninsular 
Ranges of Southern California, USA. MSJSP is roadless, 
an area of historically minimal human agency (e.g., logging, 
domestic livestock grazing), and supports approximately 57 
 km2 of old-growth coniferous forest growing under a Medi-
terranean climate regime (Köppen Csc) with cold, wet win-
ters and cool, dry summers. Climate data (1966–2000) from 
Long Valley Ranger Station (LVRS) at 2554 m elevation 
inside MSJSP show mean annual precipitation at LVRS is 
600.4 mm with an average of 2166 mm snowfall/year. Mean 
minimum/maximum temperatures (°C) for January and July 
are −5.8/8.7 and 6.1/23.5. The soil type (https:// webso ilsur 
vey. nrcs. usda. gov/ app/ WebSo ilSur vey. aspx) is composed 
of weathered granodiorite residuum with a soil profile of 
gravelly sandy or coarse sandy loam to a depth of 64 cm 
overlaying a weathered bedrock. We sampled two cores per 
tree for at least 30 trees for each species and processed them 
following standard dendrochronological methods (Stokes 
and Smiley 1996) and confirmed crossdating accuracy using 
COFECHA (Holmes, 1983). We standardized (mean = 1) 
and detrended each totalwood chronology for age-related 

growth response using negative exponential detrending in 
the program ARSTAN (Cook and Krusic 2005) and retained 
the STANDARD output for each species and the raw ring 
widths (mm).

To determine climate/radial growth responses, we exam-
ined monthly precipitation, PDSI, and minimum, maximum, 
and average temperature data for the South Coast Drain-
age Climate Division of California (Climate Division CA6; 
hereafter CD6) during 1900–2020. Temperature and pre-
cipitation values between the CD6 and LVRS data sets are 
significantly related (p < 0.01), but because the LVRS data 
were incomplete (e.g., missing observations for multiple 
years) and represented a shorter period, we used the CD6 
data for our analyses. As a surrogate for snowpack, we used 
data from the LVRS showing the Julian date of the last day 
of snow cover, beginning in 1967 and ending in 2020 with 
6 total years of missing data including 5 years since 2020. 
We used PDSI values to characterize long-term (i.e., multi-
year) drought conditions as this metric is commonly used 
for dendroclimatic studies (e.g., Kerhoulas et al. 2017; Tran 
et al. 2017; Montpellier et al. 2019; Gangopadhyay et al. 
2022) and has been demonstrated to exhibit the highest cor-
relations of water availability variables with radial growth 
of pine species in the Southwestern USA (e.g., Kempes et al. 
2008; Keen et al. 2020; Keen et al. 2022). We defined a 
drought event as any period with three or more consecutive 
months with PDSI values < −2 (qualitatively “moderate 
drought”), a metric first proposed and used by Diaz (1983). 
We tabulated the number of drought events, mean length 
(months), and mean severity of drought events. We corre-
lated climate/growth relationships using Pearson correlation 
and compared differences in radial growth between the long-
est twentieth-century multi-year drought (1959–1966) with 
the hot drought period of 2000–2022 using an independent 
samples test. Lastly, to facilitate the evaluation of annual 
temperature and precipitation deviations during the two 
drought periods, we converted mean minimum temperature 
and total precipitation to z-scores based on the 1900–2020 
CD6 data.

Results and discussion

Mean radial totalwood growth (i.e., standardized ring-width 
indices) during 2000–2020 (PDSI x̄ = -2.17) was 1.07 
(PIJE), 1.17 (PILA), and 1.13 (PICO) with a group average 
of 1.12 or 12% above the 300–400-year-long chronologies 
(Fig. 1 A–D, Table 1). However, during 2011–2020 (PDSI 
x ̄ = −3.22), which included the most severe portion of the 
twenty-first-century drought marked by 85 consecutive 
months of negative PDSI values (x ̄ = −4.98), radial growth 
averages were 1.24, 1.38, and 1.20 with a group average of 
1.27 or 27% above average. In comparison, during an earlier 

https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx
https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx


International Journal of Biometeorology 

Fig. 1  A–C Standardized 
radial growth (green), raw-ring 
widths (red, mm) of totalwood, 
and chronology sample depth 
(black) for PIJE (A), PILA 
(B), and PICO (C). D Annual 
precipitation (blue), annual 
minimum temperature (red), 
and number of months per 
decade (black and shown at the 
end of the decade) with PDSI 
values <−2. Climate data are 
from CA CD6
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period (1959–1966) characterized by persistent drought 
(PDSI x ̄ = −1.91), which included 54 consecutive months 
of negative PDSI values (x ̄= −3.05), mean radial totalwood 
growth was 0.76, 0.88, and 0.83 with a group mean of 0.82, 
indicating growth was 82% of average (Table 1). The mean 
radial growth of PIJE, PILA, and PICO and the three spe-
cies combined during 2000–2020 was significantly greater 
(p < 0.01, 0.05, 0.01, 0.01) during the hot drought period 
of 2000–2020 compared to the 1959–1966 drought. Simi-
larly, mean radial growth was significantly greater (p < 0.01) 
during 2011–2020 than 1959–1966 for each species and all 
species combined (Table 1).

From the mid-twentieth century through 2020, radial 
growth was most strongly related to annual (Novem-
ber–October) minimum temperature (r = 0.61, 0.46, and 
0.55, p < 0.01) and secondarily by annual (November–Octo-
ber) precipitation (r = 0.39, 0.27, 0.34, p < 0.05); thus, tem-
perature is the principal driver of growth and trees respond 
positively to warmth (Table 1). Two narrow growth outlier 
years since 2000 (2007 and 2002) were the two driest years 
(z-scores −1.66, −1.61) since 1900, yet radial growth dur-
ing 2014 and 2018, which were the fourth and fifth driest 
years (z-scores of −1.45, and −1.30), were 1.25 and 1.25, 
or collectively 25% above average. The principal difference 
between the low-growth outliers of 2002 and 2007 and the 
above-average growth of 2014 and 2018 is that the later 
years were the second (tied) warmest since 1900 (z-scores 
3.62) while 2002 was the 47th warmest (z-score 0.22) and 
2007 was the 27th warmest (z-score 0.69). The 1959–1966 
and 2000–2020 droughts differ as the earlier drought was 
marked by cooler (−0.47 °C) and much drier (−109 mm) 
conditions (1900–2020 means of 8.87 °C and 431 mm) in 
contrast to the 2000–2020 hot drought, which was warmer 
(0.6 °C) and drier (−43.9 mm)—a drought type that has not 
otherwise affected Southern California since 1900 (Fig. 1D). 
Raw ring widths either significantly (p < 0.05) increased 

(PIJE and PILA, Fig. 1A and B) or remained stable (PICO, 
Fig. 1C) during 2000–2020 indicating increases in standard-
ized growth were not a mathematical result of narrowing 
ring widths.

We found no evidence that increased radial growth dur-
ing the twenty-first century was associated with changes in 
chronology depth, tree age, or changes in springtime snow 
cover duration (i.e., timing of the snowmelt). Specifically, 
(1) among the three chronologies used to compare the two 
drought periods, 82 of the 86 samples covered both peri-
ods, (2) the mean (range 215–255 years) and median (range 
228–271 years) ages of the cores used for comparison sug-
gest growth changes were not associated with major life-
stage shifts, and (3) there was not a shift (r = −0.08, p = 
0.54, n = 48) in snow cover duration. Several (e.g., Vaganov 
et al. 1999; Sanmiguel-Vallelado et al. 2021) have docu-
mented that delayed melt of snowpack is associated with 
delayed soil warming and thus a later onset of tracheid pro-
duction. However, we found springtime snowmelt timing 
was positively correlated with radial growth for PIJE and 
PICO (r = 0.34, p < 0.05 for both species), but not for PILA 
(p > 0.05) suggesting that years with later snowmelt dates 
did have a minor to non-existent influence for these species 
growing in MSJSP (Table 1).

Conclusions

We found three pine species experienced increased radial 
growth during the extended hot drought of 2000–2020, 
except during 2002 and 2007, suggesting there are limi-
tations to above-average growth during hot droughts 
only under the most extreme drought conditions. In this 
Mediterranean climate environment, radial growth for 
each species is principally earlywood, comprising > 80% 
of the total raw ring widths (Table 1), and these ratios 

Table 1  Results for chronology development, radial growth, and climate metrics for PIJE, PILA, and PICO

Species PIJE PILA PICO Group mean

Series intercorrelation 0.65 0.66 0.63
Mean Sensitivity 0.25 0.27 0.23
Standardized mean totalwood growth 2000–2020 1.07 1.17 1.13 1.12
Mean PDSI (2000–2022) −2.17 −2.17 −2.17 −2.17
Standardized mean totalwood growth 2011–2020 1.24 1.38 1.2 1.27
Mean PDSI (2011–2022) −3.22 −3.22 −3.22 −3.22
Standardized mean totalwood growth 1959–1966 0.76 0.88 0.83 0.82
Mean PDSI (1959–1966) −1.91 −1.91 −1.91 −1.91
Earlywood width (%) of totalwood raw ring widths 80.1 85.1 86.3 83.3
Correlation with mean annual (prior Nov–current Oct) minimum temperature. All values (p < 0.01) 0.61 0.46 0.55
Correlation with total annual (prior Nov–current Oct) precipitation. All values (p < 0.01) 0.39 0.27 0.34
Correlation with date of spring snow melt 1967–2020. Significant at p < 0.05 for PIJE and PICO 0.34 0.16 0.34
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remained stable during the study period. We posit that 
outside of extremely low precipitation years, the effect of 
hot droughts on tree growth at high elevations in the SJMs 
and likely elsewhere with similar conditions in western 
North America where temperature is the principal growth 
driver is to advance the onset of cambial growth to earlier 
in the summer because of an elongated earlywood growing 
season. Our conclusion is consistent with dendroclimatic 
studies of conifers at high-elevation sites in Montana, 
USA, including Kichas et  al. (2023) who documented 
increased radial growth of P. albicaulis under warmer and 
drier conditions and that of Knapp and Soulé (2011) who 
found that maximum Larix lyalli growth occurred during 
periods of summer meteorological drought. Conversely, 
in an evaluation of two pine species (P. sylvestris and P. 
halepensis), Camarero et al. (2022) found that an asso-
ciation between a longer growing season and enhanced 
radial growth was complex and for P. sylvestris growing 
at a boreal site, radial growth did not increase despite an 
earlier onset of leaf and wood formation. Thus, increased 
twenty-first-century growth of the three pine species we 
examined may reflect either faster growth or a combination 
(i.e., increased growing season length and rate) of these 
factors. Conversely, radial growth differences between the 
early and late drought periods are unlikely an artifact of 
(1) tree mortality occurring during the first drought period 
resulting in only heartier, faster-growing trees included 
in the chronology during the “hot drought” period, (2) 
changes in mean/median tree ages from juvenile to adult 
stage, and (3) changes in snow cover duration in MSJSP.

The greatest mortality reported for coniferous species of 
California during the extended drought has been associated 
with trees growing on lower-elevation western slopes of 
the southern Sierra Nevada (Fettig et al. 2019; Madakum-
bura et al. 2020) and Transverse and Peninsular Ranges of 
Southern California (Dong et al. 2019). In these environ-
ments, trees have been more susceptible to extensive drought 
because of overall drier and warmer conditions resulting in 
severe drought. During these hot droughts, the effects of 
meteorological conditions on growth are detrimental as 
opposed to beneficial although exceptions, principally high-
elevation forests such as found in the SJMs, exist where spe-
cies are growing at their mid-to-upper elevational limits and 
generally are not water-limited. Thus, it is not that trees grow 
faster during droughts, but rather when increasing tempera-
tures promote hot drought conditions that exceptional growth 
conditions can occur in some temperature-limited environ-
ments including the SJMs. Lastly, multiyear hot droughts 
are likely to increase in the twenty-first century, which may 
influence tree selection criteria when choosing species for 
climate reconstructions as climate/growth responses of the 
twentieth century can differ from the twenty-first century 
depending on location.
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