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a b s t r a c t

We examined radial growth rates of locally co-occurring Douglas-fir (PSME e Pseudotsuga menziesii var.
glauca) and ponderosa pine (PIPO e Pinus ponderosa var. ponderosa) trees growing within the Northern
Rockies to determine if there are differential growth and climatic responses between these species and
whether these responses are consistent among topographically and climatologically diverse sites. We
developed standardized tree-ring chronologies from seven sites, with each site a matched pair of PSME
and PIPO. For each chronology we examined the climate response of radial growth by comparing the
standardized ring widths to a suite of climatic variables. We examined temporal changes by comparing
1905e1950 and post-1950 growth rates and climatic conditions. Both conifers experience increased
radial growth post-1950. A combination of spring/summer moisture conditions related positively to
radial growth and the primary climatic drivers were consistent both between species and within the
region. The primary climatic drivers of radial growth remain unchanged during the last century or have
trended toward drier conditions unfavorable for growth. We conclude that increases in standardized
radial growth rates are unlikely climatically-driven. Other potential vectors of radial growth change, such
as atmospheric CO2 enrichment, have affected these co-occurring species on a largely equal basis and
positively.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Global circulationmodels for the Northern Rockiese an area that
encompasses the natural range of some of the most commercially
viable U.S. tree species and includes extensive tracts of semiarid
woodlands e predict warmer and drier conditions the next several
decades (Christensen et al., 2007; Littell et al., 2011). In North
America west of the Mississippi river, summer temperatures are
predicted to rise by as much as 4 �C coupled with precipitation
declines up to 20% below current normals by late century
(Christensen et al., 2007). Similar predictions for warmer, drier
summers occur for other areas containing arid and semiarid lands,
including the Mediterranean region and central Asia (Christensen
et al., 2007).

The predicted climatic conditions create an impetus to examine
the historical responses of trees to changing climate and atmo-
spheric composition to improve our understanding of how the
dominant conifers in the region have responded during and after
: þ1 828 262 3067.
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warmer and drier periods throughout the past century. If climatic
change in the Northern Rockies occurs as predicted (Christensen
et al., 2007; Hamlet et al., 2007; Littell et al., 2011; Westerling
et al., 2006), forests in this region will experience more frequent
drought conditions that should impact forest productivity. But to
what degree andwhich species will bemost affected? Complicating
this understanding is that the limiting impacts of drought may be
offset by one possible cause of the climatic change e increasing
atmospheric CO2.

Water stress may enhance the relative effects of elevated CO2 on
woody plant growth (Huang et al., 2007; Idso and Idso, 1994;
Wullschleger et al., 2002), thus the impacts of increasing CO2 can be
ameliorative for drought stress in semiarid environments (Knapp
and Soulé, 2011; Soulé and Knapp, 2006, 2011) and older trees
(i.e., >250 years) may benefit the most (Knapp and Soulé, 2011).
Under higher atmospheric CO2 concentrations, stomatal openings
for tree leaves contract during photosynthesis (e.g., Tognetti et al.,
1998), reducing transpiration rates and resulting in increased
water-use efficiency (WUE). Soulé and Knapp (2011) examined
changing rates of intrinsic water-use efficiency (iWUE e a measure
of the relationship between the rate of CO2 assimilation and tran-
spiration through stomatal openings) for Ponderosa pine trees
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(Pinus ponderosa var. ponderosa e hereafter PIPO) throughout
semiarid sites in the western United Sates and found significant
upward trends at all locations, including three of the sites exam-
ined in this study. With increasing iWUE, radial growth may
continue later through the summer in environments where soil
moisture becomes limiting by July or August such as the Pacific
Northwest and Northern Rockies, or may continue at higher rates
during a drought period.

In this paper we examine relationships between climatic con-
ditions and radial growth rates of locally co-occurring Douglas-fir
(Pseudotsuga menziesii var. glaucae hereafter PSME) and PIPO trees
within USFS Region 1 of the Northern Rockies and determine if
differential responses to changing environmental conditions exist
between these two conifers. By working in natural settings where
gradual increases in atmospheric CO2 have occurred during the last
100þ years, by sampling from sites with minimal historic human
agency where the trees locally co-occur, and by carefully selecting
trees so as to minimize potentially confounding factors for radial
growth, we gain insight into how these two species are responding
to climate and changing atmospheric conditions. Specifically, we
hypothesize that: 1) radial growth rates of PSME and PIPO have
changed significantly during the past century; 2) changes in
observed radial growth rates are climatically driven; 3) radial
growth responses of PSME and PIPO during and after drought have
temporally changed; and 4) differential responses between the two
co-occurring tree species exist and are spatially consistent. Herein
we follow methodologies developed from earlier studies (Knapp
and Soulé, 2011; Soulé and Knapp, 2011) in the same region that
focused on PIPO, and use similar evaluative metrics (Knapp et al.,
2001a, 2001b) to compare PSME and PIPO responses to changing
environmental conditions.

Both PSME and PIPO are ecologically important tree species
throughout the American West, have similar and extensive
geographical ranges, and often grow at the same locations (Earle,
Fig. 1. Location of the seven matched pair study sites in Montana and Idaho, USA and bound
the three letter site codes are found in Table 1.
2007). PSME and PIPO are also major species for US forestry, rep-
resenting the first- and third-most harvested trees by volume,
respectively (WWPA, 2012). Changing atmospheric and climatic
conditions may create a scenario where growth rates of PSME or
PIPO are differentially affected, either positively or negatively, thus
potentially affecting the structure and composition of these forests/
woodlands. Globally, climate change can impact semiarid forests
directly through water use and net primary productivity changes,
and via “cascading” disturbances whereby a change in one climatic
vector such as drought can cause subsequent changes in fire re-
gimes and the frequency and intensity of insect and pathogen
outbreaks (Dale et al., 2001). These cascading perturbations can
result in radical changes in forest dynamics (Dale et al., 2001; Paine
et al., 1998), and this has a direct bearing on current and future
management decisions and practices (Peterson et al., 2011).

2. Methods

2.1. Tree-ring data collection and processing

We collected samples and developed fourteen standardized
tree-ring chronologies from seven matched-paired sites (PSME and
PIPO) in Idaho and Montana (Fig. 1, Table 1). Each chronology is
identified using a three letter alphabetic code common in tree-ring
science (Table 1). We selected all sites based on criteria designed to
limit the number of potential confounding influences that could
affect radial growth. Specifically, our selected sites: 1) were open
stands of co-occurring PSME and PIPO trees available in both older
(establishing prior to AD 1800) and younger (interior dates post-
1875) age classes; 2) had a history of minimal anthropogenic
disturbance; 3) are located in interior Idaho and western Montana
to negate or minimize potential impacts on radial growth by ozone
(Lee and Hogsett, 2001) or nitrogen deposition (Fenn et al., 2003);
4) have no known histories of pandora moth (Coloradia Pandora)
aries of the climatic divisions fromwhich climatic data were used. Study site names for



Table 1
Chronology information. Rbar values represent the earliest date (year) for each
chronology meeting the 0.85 threshold ensuring adequate sample size.

Site Interseries
correlation

Mean
sensitivity

Percente
absent
rings

0.85
Rbar
(AD)

# of samples series

In
series

Dates (AD)

Boulder Creek Research Natural Area, Montana (BCR ¼ Ponderosa pine
chronology, BCD ¼ Douglas-fir chronology)

BCR 0.563 0.245 0.110 1734 48 1560e2008
BCD 0.549 0.212 0.014 1844 53 1307e2008
Rock Creek West, Montana
RCR 0.655 0.295 0.278 1751 47 1602e2006
RCD 0.767 0.260 0.029 1776 68 1743e2006
Fish Creek, Montana
FCR 0.576 0.252 0.269 1849 48 1575e2006
FCD 0.673 0.227 0.083 1785 54 1611e2006
Ferry Landing Research Natural Area, Montana
FLR 0.637 0.261 0.028 1770 54 1560e2006
FLD 0.665 0.275 0.011 1797 60 1690e2006
Rock Creek East
RKR 0.694 0.312 0.211 1718 61 1541e2008
RKD 0.744 0.310 0.016 1761 70 1665e2008
Cabin Gulch Research Natural Area, Montana
CGR 0.690 0.355 1.056 1771 46 1542e2009
CGD 0.701 0.413 0.642 1810 44 1674e2009
Wellner Cliffs Research Natural Area, Idaho
WCR 0.574 0.268 0.503 1677 42 1653e2009
WCD 0.611 0.244 0.314 1782 43 1673e2009
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(Speer et al., 2001) outbreaks; and 5) are geographically diverse to
ensure that we sampled PSME and PIPO across a spectrum of
environmental conditions including soils, slope and aspect. Thus,
the impacts of climate and other exogenous factors such as
changing atmospheric composition should be well expressed in the
data. Additionally, we collected samples for both species from the
same area at each location so as to minimize potential intrasite
topoedaphic differences between species that might affect radial
growth. Soil conditions varied between and within sites based on
slope (0e40%), soil depth (25e50 cm) and parent material (pers.
observation), but no detailed soil surveys exist for our sites (except
for BCR). Absent this information, we accounted for edaphic con-
ditions potentially affecting our analysis by consistently sampling
equal numbers of trees from both species at the same locations and
avoided collecting samples from one species where the other
species did not locally co-occur (i.e., within 100 m). Approximately
50% of our samples were from PSME and PIPO growing within 15 m
of each other.

We sampled a minimum of 30 PSME and 30 PIPO trees at each
site using standard dendroecological field techniques (Phipps,
1985). We employed a selective process to ensure sampling of
trees from a variety of age classes and to minimize any potential
impacts on radial tree growth associated with fire, lightning strikes,
or pathogens. We avoided individual trees with visual signs of in-
fections (e.g., witches’ broom associated with dwarf mistletoe
[Arceuthobium spp].), mountain pine beetles (Dendroctonus pon-
derosae) and blue stain fungus (Grosmannia clavigera), visible scars
from fire and lightning strikes, or broken or dead tops. We sampled
only in open-canopy locations to minimize potential growth
surges/declines associated with canopy loss/infilling. We collected
two increment cores at approximately 1.4 m height from opposite
sides of each tree and parallel to slope contours to avoid problems
associated with reaction wood.

We processed and crossdated all core samples using standard
laboratory procedures for dendroecological samples (Phipps, 1985).
We used a linear encoder to measure annual ring widths to an
accuracy of 0.01 mm and corrected crossdating errors using
diagnostics provided by COFECHA (Holmes, 1983). We obtained
standardized annual radial growth values by applying conservative
techniques (e.g., negative linear, negative exponential) available
within the program ARSTAN (Cook and Holmes, 1997). The annual
values are normalized to a mean of 1.0 to account for age-related
declines in growth and represent average tree growth within a
given site. After experimentation, we determined that the STAN-
DARD chronology consistently had stronger relationships with
climate than the ARSTAN chronology, so we used the STANDARD
chronology index values for all analyses.

2.2. Growth/climate analyses

We examined climate/growth relationships using regionally
derived climatic division-level data from 1905eend of record
(2006e2009). Divisional data are high quality and bias corrected
(Karl et al., 1986) monthly records of temperature, precipitation,
and Palmer Drought Severity Index (PDSI) values (Palmer, 1965).
Divisional data are commonly used in dendroecological studies
(e.g., Fye and Cleaveland, 2001; Grissino-Mayer, 1996; Pohl et al.,
2002) and have been successfully used in studies of semiarid tree
species (Knapp et al., 2001a; Soulé and Knapp, 2006). Using Pear-
son correlation, we examined monthly precipitation, temperature,
and drought severity influences including lagged influences up to
one year, and various composite variables derived from the
monthly variables to represent seasonal (e.g., total summer pre-
cipitation) conditions. We identified the primary climate driver for
radial growth at each site and determined if there was consistency
in the response to multiple thermal and moisture variables to
determine if there are differential climate responses between
species.

For consistency, we used the 1905eend of record (Table 1)
period to determine if radial growth rates have changed temporally.
We identified the presence or absence of long-term trends using
Pearson correlation between radial growth and time and a null
hypothesis of no trends in radial growth through time. Throughout,
we use p < 0.05 to establish statistical significance. Because
increases in atmospheric CO2 levels become pronounced from
the mid 20th century onward, AD 1950 is used as a divide in
vegetation-change studies (e.g., Graumlich, 1991; Knapp et al.,
2001a, 2001b; Soulé and Knapp, 2006). We compared radial
growth rates from early (1905e1950) and late (1951eend of record)
periods using a Wilcoxon Signed Ranks Test and a null hypothesis
of no significant differences in radial growth between time periods.
We used similar tests to determine the degree of radial growth-
related climate change. For each site we identified the primary
variable for radial growth and then tested this variable for long-
term linear trends and for significant differences between the
early and late time periods. We also compared radial growth be-
tween selected decades of the early and late periods. We chose a
decade from the early period that matched the late period in terms
of mean drought severity (as defined by July PDSI values) and
number of years with above and below-normal moisture condi-
tions. We used July PDSI as it was the most common climatic driver
for radial growth across the 14 chronologies from the seven study
sites (i.e., onematched PSME and one PIPO chronology from each of
seven sites). For sites in Montana Climatic Division 1 (Fig. 1) we
compared 1921e1930 (mean July PDSI �0.52, 6/10 years <0) with
1996e2005 (July PDSI �0.55, 6/10 years <0), for CGR/CGD we used
1925e1934 (July PDSI �1.26, 7/10 years <0) and 1995e2004 (July
PDSI �1.24, 7/10 years <0), and for WCR/WCD we used 1915e1924
(July PDSI �0.13, 6/10 years <0) and 2000e2009 (July PDSI �0.21,
5/10 years <0).

We tested for changing responses in radial growth to drought
conditions several ways. First, we identified all years when July
PDSI values exceeded �1.0 (mild drought) and �2.0 (moderate
drought). We then tested the theory that radial growth responses



Table 2
The strongest relationships (1905-end of record) between standardized annual
radial growth and climate variables representing drought severity (PDSI), precipi-
tation, and temperature at each study site based on Pearson correlation. All r-values
are significant with p < 0.02.

Site Drought
relationship

Precipitation
relationship

Temperature
relationship

r-value (climate variable)
BCR 0.57 (jaspd) 0.53 (mjjppt) �0.37 (mjjtemp)
BCD 0.41 (julpd) 0.5 (mjjppt) �0.3 (mjjtemp)
RCR 0.47 (julpd) 0.55 (mjjppt) �0.3 (mjjtemp)
RCD 0.44 (julpd) 0.53 (mjjppt) �0.34 (mjjtemp)
FCR 0.48 (l1octpd) 0.47 (mjjppt) �0.3 (mjjtemp)
FCD 0.55 (junpd) 0.47 (l1n_appt) �0.26 (jultemp)
FLR 0.54 (jaspd) 0.44 (l1o_sppt) �0.41 (mjjtemp)
FLD 0.6 (junpd) 0.5 (mjjppt) �0.32 (jultemp)
RKR 0.61 (julpd) 0.59 (mjjppt) 0.29 (mjjtemp)
CGR 0.54 (julpd) 0.51 (l1o_sppt) �0.39 (jultemp)
CGD 0.6 (julpd) 0.52 (l1o_appt) �0.41 (mjjtemp)
WCR 0.53 (julpd) 0.52 (mjjppt) �0.35 (mjjtemp)
WCD 0.46 (l1seppd) 0.5 (mjjppt) �0.35 (mjjtemp)

The variables are: jaspd ¼ mean of JulyeSeptember PDSI values; mjjppt ¼ total
precipitation in MayeJuly; mjjtemp¼mean temperature JuneeAugust; julpd¼ July
PDSI value; l1octpdd ¼ PDSI value of the prior year October; junpd ¼ June PDSI
value; l1n_appt ¼ total precipitation prior year November to current year August;
jultemp ¼ July mean temperature; l1o_sppt ¼ total precipitation prior October to
current year September; l1o_appt¼ total precipitation prior year October to current
year August; l1seppd ¼ PDSI value of the prior year September.
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during years of moisture stress may have changed temporally in
relation to increasing iWUE by determining if radial growth rates
during drought years of the early periodwere significantly different
(via the Wilcoxon test and a null hypothesis of no significant dif-
ferences between time periods) than during drought years of the
late period. We also examined radial growth responses following
drought to determine recovery rates between species and whether
these rates have changed temporally in association with the
ameliorative effects of increasing atmospheric CO2. This effect is
theorized to be related to an overall reduction in stress during
recent drought periods because of increased iWUE (Knapp et al.,
2001b). Within the pre- and post-1950 periods we identified
moderate (mild) drought recovery years as any year having a PDSI
value >0 that was preceded by at least one year with PDSI values
<�2.0 (�1.0).We then used theWilcoxon test and a null hypothesis
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of no significant differences between time periods to determine if
radial growth rates during drought recovery years differed between
early and late periods.

We quantitatively assessed whether PSME and PIPO have
experienced differential growth responses using matched pairs
Wilcoxon tests to compare standardized radial growth rates of
PSME and PIPOwithin a given sites (e.g., BCR compared to BCD).We
did this for the 1905-end of record period and for the early and late
periods with a null hypothesis of no significant differences in radial
growth rates between the two species. In addition, we qualitatively
assess the similarity in climate response between species and
compare species-specific responses from all statistical tests.

3. Results

3.1. Growth/climate relationships

Radial growth of both PSME and PIPO is largely controlled by
available moisture during the growing season (Table 2). Among all
variables, July drought severity had the most consistent relation-
ship to radial growth, with the strongest relationship at 5/14 sites
and second to fourth strongest at the remaining sites. As PDSI
accounts for antecedent moisture conditions, the positive and sig-
nificant (p < 0.02) relationships demonstrate that PSME and PIPO
radial growth is principally affected by moisture conditions of the
late spring to early summer. A further confirmation of this rela-
tionship is the consistent response of the dominant precipitation
variable, total May to July precipitation, which has the strongest
climate response at 4/14 sites and is the dominant precipitation
variable at 10/14 sites. The response of radial tree growth to tem-
perature is consistently negative and is also maximized in the late
spring-early summer period (Table 2).

3.2. Radial growth rates during entire record

Differential growth responses between PSME and PIPO were
unsupported by our results. From 1905 until the end of the record
(i.e., long-term) there were no significant differences between any
of the seven matched pairs, and the seven site mean for PIPO was
1.01 compared to 1.00 for PSME. Although the yearly ring-width
values are standardized to a mean of 1.00, the tree-ring record
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extends back to at least AD 1743 at each site (Table 1), allowing for
variance around the mean post-AD 1905. For the early period we
found significant differences between RCR/RCD (0.91/0.97 radial
growth) and FCR/FCD (1.01/0.92) and for the late period we found
no significant differences.

Our analysis of long-term trends of the primary climatic de-
terminants of radial growth for each study site revealed no linear
trend for 12/14 sites, and a trend toward drier conditions that
would be unfavorable for radial growth at CGR and CGD (r ¼ �0.35,
p ¼ 0.000 for July PDSI). Further, our comparison of climatic con-
ditions between the pre-and post-1950 period showed no signifi-
cant changes in any variable (Fig. 2). We found long term upward
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Our analysis of radial growth rate differences between the early
and late periods using selected decades of similar drought severity
also reveals increasing radial growth in the later years of the record
(Fig. 4). For all three comparisons (i.e., three climatic divisions)
there were no significant differences in drought severity between
the early and late decades. Radial growth was greater in the late
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period at 13/14 sites and for the two 7-site means, and significantly
greater at 8/14 sites.

3.3. Radial growth rates during and after stress periods

Comparison of radial growth rates during drought years of the
early and late periods shows a consistent response across the region
and between species, as radial growth rates are greater in the late
period at all sites for both mild (PDSI < �1.0) and moderate
(PDSI < �2.0) drought years, with the differences statistically sig-
nificant at 13/14 sites during mild droughts (Fig. 5) and at 8/14 sites
during moderate droughts (Fig. 6). While mean drought conditions
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sample size) (Fig. 7). The recovery years for mild drought also had
greater growth in the late period at 12/14 sites (Fig. 8). The species
response to drought conditions and drought recovery were strong
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moderate drought-recovery years the differences were greater for
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PSME (0.18 increase) than for PIPO (0.10 increase), and the three
sites with significant increases were PSME. For moderate drought-
recovery years PSME again had the greater increase, 0.14 compared
to 0.10.

4. Discussion

4.1. Changes in radial growth rates and rising atmospheric CO2

The results support our first hypothesis that radial growth rates
of PSME and PIPO have changed significantly during the past
century. Specifically, the results show that radial growth rates have
0.6

0.7

0.8

0.9

1

1.1

1.2

BCR
BCD

RCR
RCD

FCR
FCD

FLR FLD

Stud

R
a
d

i
a
l
 
G

r
o

w
t
h

EARL

**

Fig. 8. A comparison of standardized radial growth rates during recovery years from mild
periods for each study site and the seven site means for PIPO and PSME. ** ¼ significant (p
years between the three climatic divisions, a statistical test for the seven site means was n
increased post-1950 absent changes in climate that would favor
enhanced growth. Elevated atmospheric CO2 can have a positive
effect on radial growth rates of naturally-occurring trees in semi-
arid environments (Graybill, 1987; Graybill and Idso, 1993;
Hättenschwiler et al., 1997; Knapp and Soulé, 2011; Knapp et al.,
2001a, 2001b; LaMarche et al., 1984; Martínez-Vilalta et al.,
2008; Soulé and Knapp, 2006), thus providing a possible non-
climatic explanation for the increased growth. In the absence of
alternative explanations for the observed increases in radial
growth, we posit that CO2 enrichment is a likely driving force.
During the early period, average atmospheric CO2 levels were 305
ppmv, and from 1951 to 2006 the average increased 11% to 339
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ppmv (Etheridge et al., 1998; Keeling and Whorf, 2005), with a
total increase of approximately 83 ppmv from 1905 to 2006.
Similarly, radial growth averages for all seven sites were 11.5%
(PIPO) and 8.4% (PSME) higher during the late period compared to
the early period. The majority of these differences occurred during
and following drought-stress periods.

Increasing levels of atmospheric CO2 can lead to reductions in
moisture stress, although species-specific responses vary (Dawes
et al., 2011; Gedalof and Berg, 2010). In comparing responses
across multiple study sites, Gedalof and Berg (2010) found that
PSME experienced greater radial growth responses to atmospheric
CO2 enrichment than PIPO. While Gedalof and Berg (2010) relate
increasing radial growth associated with atmospheric CO2 enrich-
ment to enhanced photosynthesis, the alternative explanation of
growth responses through increasing iWUE has been demonstrated
for PIPO growing in the northern Rocky Mountain region (Knapp
and Soulé, 2011; Soulé and Knapp, 2011). If PSME and PIPO are
sensitive to rising atmospheric CO2 levels, then their drought
tolerance should increase over time. Our finding of greater radial
growth during drought years and post-drought recovery years
post-1950 compared to the 1905e1950 period supports our third
hypothesis and the contention that these species cope better with
drought than during the first half of the 20th century. Several
studies have documented that increased WUE associated with
elevated atmospheric CO2 levels cannot sufficiently compensate for
decreases in water availability caused by warmer and/or drier
conditions (Andreu-Hayles et al., 2011; Linares and Camarero,
2012; Peñuelas et al., 2008, 2011). Our findings suggest an
ameliorative effect during stressful periods and an overall increase
in radial growth during the latter 20th to early 21st century, despite
considerably drier conditions during the past decade.

4.2. Climatic drivers of radial growth

In terms of the climatic responses to radial growth between
species, our finding reveals there are minimal differences between
PSME and PIPO, thus our hypothesis four was not supported. Radial
growth of both species responds to the same climate drivers and
the responses are of similar magnitude. Both Grissino-Mayer et al.
(1998) and Watson and Luckman (2002) found similar climatic
responses for PIPO and PSME growing in close proximity. PIPO and
PSME overlap in their broad-scale geographic ranges (Little, 1971)
and within a given site are exposed to similar topoedaphic condi-
tions, climatic conditions, and disturbance history. At all our sites
the trees were spatially intermingled, with mature PSME and PIPO
often growing within close proximity and thus in competition for
resources.

We conclude that changes in observed radial growth are not
climatically driven, thus our second hypothesis is not supported.
We did find significant increases in growth for both PSME and PIPO
post-1950 (Fig. 3), but these changes were not concurrent with any
significant changes in the primary climatic drivers of radial growth.

5. Conclusion

Although others have found differential physiologic (Stout and
Sala, 2003) or growth responses between PSME and PIPO
(Gedalof and Berg, 2010), our findings show that no meaningful
interspecific differences in long-term growth rates or changing
growth rates since the early 20th century occurred at seven sites
located throughout the Northern Rockies. Specifically, we found
that: 1) both conifers have experienced increased radial growth in
the post-1950 period relative to the pre-1950 period; 2) PSME and
PIPO respond similarly to climate; 3) the primary climatic drivers of
radial growth remain unchanged during the last century or have
trended toward drier conditions unfavorable for growth; and 4) any
changes in standardized radial growth rates associated with CO2
enrichment have affected these co-occurring species positively and
on a largely equal basis.

The consistency of responses at multiple sites under a variety of
topoedaphic and climatic conditions and after controlling for a
variety of growth-altering factors suggests that, at a regional scale,
these trees have thrived under the environmental conditions of the
latter half of the 20th century and early 21st century. That said, we
caution that radial growth is only one measure of species health,
and that we cannot extrapolate our findings to what would occur
under continued warmer and drier conditions. Competition for
resources may elicit species-specific physiologic responses as a
coping mechanism for water stress (Marshall and Monserud, 2006;
Piñol and Sala, 2000; Stout and Sala, 2003), and these responses can
change through time (Marshall and Monserud, 2006), with po-
tential implications under changing climatic conditions. Given the
predictions of global circulation models for warmer and drier
summers within multiple regions supporting semiarid forests and
woodlands, our results may be applicable to regions such as central
Asia, the Mediterranean, and throughout the American West
that have undergone extensive changes during the past century
(e.g., Clifford et al., 2011; Miller and Wigan, 1994).
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